
Journal of Fluids and Structures (2002) 16(6), 811–840
doi:10.1006/jfls.442 available online at http://www.idealibrary.com on
MODELLING TWO-PHASE FLOW-EXCITED DAMPING
AND FLUIDELASTIC INSTABILITY IN TUBE ARRAYS

P. A. Feenstra, D. S. Weaver and R. L. Judd

Department of Mechanical Engineering, McMaster University
Hamilton, Ontario L8S 4L7, Canada

(Received 3 October 2000; and in final form 4 September 2001)

This paper reports the results of an experimental study of the flow-induced vibration of a heat
exchanger tube array subjected to two-phase cross-flow of refrigerant 11. The primary concern
of the research was to develop a methodology for predicting the critical flow velocities for
fluidelastic instability which better characterize the physics of two-phase flows. A new method
is proposed for calculating the average fluid density and equivalent flow velocity of the two-
phase fluid, using a newly developed void fraction model to account for the difference in
velocity between the gas and liquid phases. Additionally, damping measurements in two-phase
flow were made and compared with the data of other researchers who used a variety of
modelling fluids. The results show that the two-phase damping follows a similar trend with
respect to homogeneous void fraction, and when normalized, agree well with the data in the
literature. The fluidelastic threshold data of several researchers who used a variety of fluids, is
re-examined using the proposed void fraction model, and the results show a remarkable
change in trend with flow regime. The data corresponding to the bubbly flow regime shows no
significant deviation from the trend established by Connors’ theory. However, the data
corresponding to the intermittent flow regime show a significant decrease in stability which is
nearly independent of the mass-damping parameter. It is believed that the velocity fluctuations
that are inherent in the intermittent flow regime are responsible for tripping the instability,
causing lower than expected stability of the bundle.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Flow-induced vibration is an important concern to designers of thermal hydraulic
equipment in which the components are subjected to high-velocity cross-flows of gases or
liquids. Nuclear steam generators are an example, in which the U-bend region of the tubes
is subjected to a cross-flow of high-velocity steam and water. It is highly undesirable for
these tubes to vibrate excessively under normal operating conditions, because tube fatigue
or wear and eventual leakage can occur, leading to a costly shutdown for repairs.

It is known that four mechanisms are responsible for the excitation of tube arrays in a
cross-flow: turbulence buffeting, Strouhal periodicity, fluidelastic instability, and acoustic
resonance. Of these four mechanisms, fluidelastic instability is the most damaging in the
short term because it causes the tubes to vibrate excessively, leading to rapid fatigue or
wear at the tube supports. This mechanism occurs once the flow rate exceeds a threshold
velocity at which the tubes become self-excited and the vibration amplitudes rise rapidly
with an increase in flow velocity. Most of the early experimental research in this field relied
on sectional scale models of tube arrays subjected to single-phase fluids such as air or
water, using relatively inexpensive flow loops and wind tunnels. Complete reviews on the
0889-9746/02/060811+30 $35.00/0 # 2002 Elsevier Science Ltd. All rights reserved.
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topic are provided by Pa.ııdoussis (1982) and Weaver & Fitzpatrick (1988). More recently,
researchers have expanded the study to two-phase flows, which occur in nuclear steam
generators and many other tubular heat exchangers. For an overview of two-phase flow-
induced vibration research, see Pettigrew & Taylor (1994).

To study the phenomenon experimentally, the cheapest and simplest approach is to
model two-phase flow by mixing air and water at atmospheric pressure. However, air–
water flows have a much different density ratio between the phases than steam–water flow
and this will affect the difference in flow velocity between the phases. The liquid surface
tension, which controls bubble size, is also not accurately modelled in air–water mixtures.
For comparison purposes, Table 1 presents some of the liquid and gas phase properties of
refrigerant 11 (R-11), refrigerant 22 (R-22), and air–water mixtures at representative
laboratory conditions with the actual steam–water mixture properties at typical power
plant conditions. This comparison reveals that the refrigerants approximate the density
ratio, liquid surface tension and liquid viscosity of steam–water mixtures more accurately
than air–water mixtures. There is a clear need for additional research on two-phase flow
excitation of heat exchanger tube arrays using experiments which better simulate the
actual steam–water flow encountered in service.

Typically, researchers have relied on the Homogeneous Equilibrium Model (HEM) to
define the important fluid parameters in two-phase flow such as density, void fraction and
velocity. This model treats the two-phase flow as finely mixed and homogeneous in density
and temperature, with no difference in velocity between the gas and liquid phases. The
HEM has been widely used because it is easy to implement and no reliable alternative was
generally available. The main problem with using the HEM is that it assumes a velocity
ratio of unity between the gas and liquid phases (i.e., UG=UL ¼ 1). This assumption is not
valid in the case of vertical upward flow, where buoyancy effects due to density differences
are significant. As shown in Table 1, the density ratios for the various two-phase fluids
used to model steam–water flows are quite different and, thus, so too will be the velocity
ratio (slip ratio). Earlier work by the present authors (Feenstra et al. 1995) as well as the
present study utilized gamma densitometry to measure the actual void fraction in the test-
section, and it was found to be much lower than that predicted by the HEM. This led to
the development of a new model for predicting the void fraction in upward two-phase
flows in horizontal tube bundles. Comparison with other researchers’ measurements of
void fraction in tube bundles for air–water and R-113, showed remarkably good
agreement (Feenstra et al. 2000).

This paper presents the results of an experimental study of fluidelastic instability and
damping in a parallel triangular tube array subjected to a cross-flow of liquid and two-
phase refrigerant 11. The new velocity ratio (slip ratio) model was used to estimate the
Table 1

Typical properties of various fluids used to simulate steam–water

Quantity Steam generator conditions Air–water R-11 R-22

Temperature, T (8C) 260 22 40 233
Pressure, P (kPa) 4700 101 175 1000
Liquid density, rL (kg/m3) 784 998 1440 1197
Vapour density, rG (kg/m3) 23�7 1�2 9�7 42�3
Density ratio, rL=rG 33 832 148 28
Liquid viscosity, mL (mPa s) 103 959 356 139
Surface tension, s (Nm) 0�024 0�073 0�0167 0�0074
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actual void fraction and thereby obtain more accurate estimates of the average fluid
density and equivalent flow velocity for each experiment. This model was also used to
compute these values for the stability data reported in the literature for experiments in air–
water, refrigerant 22 and steam–water. Comparisons are then made of the present data
with those on a flow regime diagram and on stability graphs.

2. EXPERIMENTAL METHODOLOGY

2.1. Modelling Approach

Typical nuclear steam generators utilize more than 3000 tubes, 13–22mm in diameter,
formed into an inverted U-shape. In the outer U-bend region, the tubes are subject to two-
phase cross-flow of steam–water, which is estimated to be 12–20% quality. It is highly
impractical and costly to perform flow-induced vibration experiments on a full-scale
prototype of such a device, and therefore small-scale sectional modelling is most often
adopted. In the present study, the approach is to model a tube span with a cantilevered
tube bundle having the same tube layout (i.e., parallel triangular) and the same pitch-to-
diameter ratio (i.e., P=D ¼ 1�44). The first mode natural frequency of the model tubes is
38�8Hz in air, and about 32Hz in liquid R-11, which approximates that of the outer most
tubes in the U-bend. The tube diameter in the model tube array is 6�35mm, about one-half
the size of the actual steam generator tubes. The length of the tubes is 305mm, which was
determined by the need to match the desired tube frequency within the test-section. The
mass per unit length of the model tube is 0�179 kg/m, which was obtained by the judicious
selection of thick-walled brass tubes, so that the mass ratio of the tube to the displaced
fluid is approximately the same as in the real steam generator. Refrigerant 11 was chosen
as the working fluid because it simulates the density ratio, viscosity ratio and surface
tension of actual steam–water mixtures better than air–water mixtures and it also allows
for localized phase change which air–water mixtures do not permit. While more costly and
difficult to use than air–water mixtures, R-11 is a much cheaper modelling fluid than
steam–water because it requires 8% of the energy to evaporate the liquid and the
operating pressure is much lower, thereby reducing the size and cost of the flow loop.
Details of the flow loop and test-section are given in Feenstra et al. (1995) and Feenstra
(2000).

2.2. Experimental Method

A schematic diagram of the test-section and tube bundle is given in Figure 1.
Measurements of tube response were obtained using a fifth row tube, where the flow
conditions would be typical of interior tubes in a bundle and not affected by upstream flow
conditions. The tube vibration response was measured with a special optical light probe
(Judd et al. 1992) and processed by a dynamic analyser, which calculates the power spectra
for the tube response in the drag and lift directions over a frequency range from 0 to
100Hz. Thermocouples were used for measuring the fluid temperatures at various
locations in the loop and were measured by a multi-point data recorder. Volumetric flow
rate into the test-section was measured with an orifice plate. Fluid temperatures as well as
heater power were needed for determining the quality of the two-phase flow in the test-
section. The amplitude response of the monitored tube in the array was measured at
constant mass flux and incrementally increasing void fraction, while the pressure in the
loop was kept roughly constant.



Figure 1. Schematic diagram of test-section with tube bundle installed (monitored tube is marked ‘‘� ’’).
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Data acquisition was commenced when steady state conditions were attained, as
determined by monitoring the fluid temperatures around the loop. The r.m.s. tip
amplitude of the tube and the frequency spectra were determined by a dynamic analyser
from at least 100 samples, over a frequency range of 0–100Hz.

2.3. Determination of Fluid Properties

In the experiments of the present study, two distinct void fraction measurements were
made, the HEM void fraction and the RAD void fraction. HEM refers to the
Homogeneous Equilibrium Model, and RAD refers to the Radiation Attenuation
Detection method. The determination of parameters such as average fluid density and flow
velocity are widely different when these two measurement methods are used (Feenstra et al.
1995). The subsequent stability analysis of the present data will incorporate both the HEM
and RAD void fraction measurements for determining the necessary two-phase fluid
properties. In addition, a new model for predicting the actual void fraction in the shell-side
flow of horizontal tube arrays has been developed from this work. This model will be used
in the fluidelastic stability analysis of other researchers’ data to determine the necessary
fluid properties. Hence, a comparison can be made of various data sets using the basis of
the HEM and the new void fraction model.

2.3.1. The homogeneous equilibrium model

A general expression for void fraction, a, is given as

a ¼ 1þ S
rG
rL

1

x
� 1

� �� ��1

; ð1Þ

where rG and rL are the gas and liquid densities, respectively, and S is the velocity ratio (or
slip ratio) of the gas and liquid phases (i.e., S ¼ UG=UL). The quality of the flow, x, is
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calculated from an energy balance which requires measurement of the mass flow rate, the
temperature of the liquid entering the heater, the heater power, and the fluid temperature
in the test-section. The HEM void fraction, aH , is the simplest of the two-phase fluid
models, in which the gas and liquid phases are assumed to be well mixed and velocity ratio,
S, is assumed to be unity. The average two-phase fluid density, r, is determined by

r ¼ arG þ ð1� aÞrL: ð2Þ

The HEM fluid density, rH , is determined using equation (2) by substituting aH in place of
a. The HEM pitch flow velocity, Vp, is determined by

Vp ¼ Gp=rH : ð3Þ

The pitch mass flux, Gp, is determined from flow measurements obtained from an orifice
plate by

Gp ¼ ð ’mm=AuÞP=ðP�DÞ; ð4Þ

where ’mm is the measured mass flow rate, Au is the flow area immediately upstream of the
tube array, P is the tube pitch, D is the tube diameter.

2.3.2. Rad void fraction measurement

Gamma ray attenuation was used in this study to obtain a void fraction measurement of
the two-phase R-11 flow in the test-section. The system consisted of a gamma radiation
source, metal shielding, a scintillator and the electronics necessary for signal processing.
The basic principle of this device for measuring void fraction [described in detail in Chan
& Bannerjee (1981)] is that the gamma flux which penetrates the test-section will be
attenuated by different amounts depending upon the average density of the two-phase flow
inside. The application of the gamma densitometer in this work was nearly identical to
that of Feenstra et al. (1995) except that in the present case, a barium-133 source was used.
The physical size of the gamma beam was 13mm high � 76m wide. In order to maximize
the measurement sensitivity, the gamma beam was passed through the small (open area)
gap between the bottom of the tube bundle and the upstream flow homogenizer. It was not
desirable to pass the beam through the tube bundle because, given that the height of the
beam relative to the tube diameter was not large, any static deflection of the tubes during
experiments could throw off the calibration of the device.

The void fraction, a, can be determined by interpolating the average density of the fluid
between the benchmark measurements for 100% liquid and gas according to

a ¼ lnðN=NLÞ=lnðNG=NLÞ: ð5Þ

In this case, N represents the gamma counts obtained during an experimental trial, while
NL and NG are the reference counts obtained prior to the experiment for 100% liquid and
100% gas, respectively. The individual gas and liquid phase pitch velocities, UG and UL,
can be calculated by

UG ¼
xGp

arG
; UL ¼

ð1� xÞGp
ð1� aÞrL

: ð6Þ

A better estimate of the average fluid density, r, can be computed using the RAD void
fraction, a, instead of the HEM void fraction, aH in equation (2). A realistic measure of
flow velocity of vertical upward two-phase flow requires consideration of the difference in
phase velocities, as opposed to equation (3) which neglects slip ratio and assumes an
average value based upon the mass flux divided by the average fluid density. As will be
seen, subsequent analysis of fluidelastic stability data shows that the significant velocity
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ratio of the phases in vertical two-phase flow raises serious questions regarding the
traditional application of the HEM for calculating average fluid density and flow velocity.
In this paper, a new formulation for an equivalent flow velocity for fluidelastic stability
analysis, Veq, is introduced according to

Veq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½arGU

2
G þ ð1� aÞrLU

2
L	=r

q
: ð7Þ

This equivalent velocity is based on the assumption that the total kinetic energy of the two
phases is a reasonable measure of the fluidelastic excitation energy of the flow. However, it
should be noted that equation (7) is based upon intuition only and does not account for
intermittency of the flow, void distribution, or details of the local two-phase fluid–
structure interaction such as liquid droplet impact. There is a need for future research to
establish a more rigorous measure of two-phase flow velocity for the analysis of fluidelastic
instability, perhaps through detailed flow velocity measurements.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Single-Phase Flow Response

3.1.1. Observed behaviour

The amplitude response of tube #5 is shown in Figure 2(a) for the fully flexible tube array.
The onset of fluidelastic instability occurs at a pitch velocity of about 0�32m/s (pitch mass
flux of about Gp ¼ 470 kg/m2 s), and was accompanied by a slight decrease in vibration
frequency. At the stability threshold, the tube motion was a clear whirling pattern with
coincidence of the frequencies in the lift and drag directions.

The relatively small peak in the in-line (drag) response at 0�28m/s pitch velocity
corresponds to a Strouhal number of 2�27 based upon the upstream velocity, or 0�70 based
upon the pitch velocity (note that, for this tube array, Vp ¼ 3�26Vu). This is close to the
Strouhal number of about 2�0 that is expected for this array type [see Weaver &
Fitzpatrick (1988)]. Beyond a pitch velocity of about 0�32m/s, the overall r.m.s. tube
response continues to increase to amplitudes sufficient to cause tube-to-tube clashing and
there is little doubt that the tube array has become unstable. While the transition from
turbulent to fluidelastic excitation is not as abrupt as typically found for tube bundles in
air-flows, the stability threshold (critical velocity) in Figure 2(a) is estimated to be about
0�32m/s. The undulations in the response in the post-stable region are typical of those
expected for the tube arrays in liquid flows; see, for example, Weaver & Koroyannakis
(1982).

Experiments were also conducted with all tubes fixed except for the monitored tube, #5.
The results for this single flexible tube in a rigid array are shown in Figure 2(b). The
stability threshold occurs at a pitch flow velocity of about 0�34m/s which is slightly higher
than for the fully flexible array. The notable difference in behaviour between these two
cases is that the single flexible tube responded to flow excitation at essentially a single
frequency and the amplitude response did not exhibit the various peaks and troughs
characteristic of the response curves for fully flexible arrays in liquid flows. As a result, the
stability threshold is more clearly defined in the lower graph. The amplitude response did
not reveal any Strouhal peak in the turbulence buffeting region (Vp50�34m/s), and the
vibration mode maintained a nearly circular orbit for the full range of flow velocities
tested.

The fact that the stability threshold is roughly the same for the two cases indicates that
the dominant fluid forces in single-phase liquid flow are the ones which are proportional to



Figure 2. Amplitude response of the tube array subjected to single phase liquid R-11 cross-flow. (a) Fully
flexible tube bundle, Vp;crit ¼ 0�32m/s. (b) Single flexible tube with other tubes held fixed, Vp;crit ¼ 0�34m/s. +,

Drag direction; &, lift direction.
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tube velocity. When these forces act in phase with tube velocity, the tube is said to be
‘‘negatively damped’’. If the stability threshold had been greatly delayed or absent in the
case of the single-flexible-tube bundle, this would indicate that fluidelastic instability is
dominated by a displacement mechanism, in which the dominant fluid forces are
proportional to tube displacement relative to its nearest neighbours. These findings are in
agreement with those of Chen (1983), who concluded that negative damping is the
dominant influence in ‘‘heavy’’ fluids, such as water and liquid R-11, while fluid-stiffness-
related forces are dominant in ‘‘light’’ fluids, such as air.

3.1.2. Comparison of fluidelastic results in single-phase flow with other data

The results for fluidelastic instability in single-phase flow are plotted in Figure 3 on a
stability diagram for comparison with other data. This diagram is presented in the form of
reduced velocity, Vp=fD, versus mass damping parameter, mda=rD2, and in order to make
the comparison consistent, the logarithmic decrement of damping of the tube in quiescent
air, da, is utilized. In this study, tube damping in air was determined by analysis of the
amplitude decay trace of the monitored tube after plucking, with the other tubes held
fixed. The parameters used to determine reduced velocity and the mass damping parameter



Figure 3. Critical flow velocities for fluidelastic instability of parallel triangular tube arrays in cross-flow:
^, Hartlen (1974) in air; &, Weaver & Yeung (1984) in water; n, Weaver & Koroyannakis (1982) in water; },
Scott & Weaver (1986) in water; *, Heilker & Vincent (1981) in air–water; r, Weaver & Grover (1978) in air;
+, Gorman (1976) in water; � , Pettigrew et al. (1978) in air–water; *, present study in liquid R-11; }}},

Weaver & Fitzpatrick (1988).
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for the monitored tube at the stability threshold in single-phase flow are given as follows:
for the fully flexible array, da ¼ 2pza ¼ 0�0069, Vp ¼ 0�32m/s, f ¼ 29�3Hz, fa ¼ 38�0Hz,
D ¼ 0�00635m, mt ¼ 0�174 kg/m, r ¼ 1480 kg/m3, so that the critical reduced velocity is
1�72 and the mass-damping parameter is 0�035. For the single flexible tube in the rigid
array, Vp ¼ 0�m/s, f ¼ 31�8Hz and m ¼ 0�256 kg/m, so that the reduced velocity is 1�68
and the mass-damping parameter is 0�030. These two single-phase data points are plotted
in Figure 3 and they are in reasonable agreement with previous empirical results obtained
from other experiments in single-phase flow of air and/or water.

3.2. Two-Phase Flow Response

Figure 4 presents some typical amplitude response curves of the fully flexible tube array
that clearly illustrates the phenomenon of fluidelastic instability. Below the critical flow
velocity, the monitored tube responds to increasing flow by a gradual increase in vibration
amplitude, but beyond the threshold velocity, the vibration amplitude suddenly increases
at a much greater slope, especially in the lift direction. In each graph, the pitch mass flux
through the test-section was held constant while the void fraction was increased by
increasing the heating of the R-11 flow. Hence the HEM pitch flow velocity increases by
virtue of a reduction in the average density of the fluid from one trial to the next. The
stability threshold in the fully flexible array is fairly well defined in all cases, which was the
main reason for adopting the present experimental method.

A comparison between the response of the tube in the fully flexible array and the single
flexible tube in the rigid array is shown in Figure 5 for two pitch mass fluxes. For the single
flexible tube case, the fluidelastic threshold is surprisingly absent at the conditions for
which it occurred in the flexible array. The stability threshold for these cases might have
been reached at a higher void fraction but this was not obtainable because of performance
limitations of the flow loop. That the stability threshold is delayed or eliminated for the



Figure 4. Amplitude response of the tube array subjected to two-phase R-11 cross-flows of various mass
fluxes. +, Drag direction; &, lift direction.
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single-flexible-tube bundle case suggests that the mechanism for fluidelastic instability in
two-phase flow may be dominated by a fluid-stiffness mechanism (i.e., tube coupling)
rather than a fluid-damping mechanism, contrary to the case for single-phase liquid flow.
However, it should be noted that Lever & Weaver (1986) found the same stability
threshold for both cases in air-flow for this array. In any event, it is clear that the presence
of two-phase flow appreciably influences the mechanism of self-excitation for a single
flexible tube in a rigid bundle.

Interestingly, for equivalent flow conditions which lie below the fluidelastic threshold, in
the turbulence buffeting region, the vibration amplitudes are about the same for the
flexible and rigid tube arrays. Similar findings were reported by Pettigrew et al. (1989b) in
two-phase air–water flow and by Pettigrew et al. (1995) in two-phase R-22 flow. This
demonstrates the equivalency of the single-flexible-tube and fully-flexible-tube arrays for
the determination of turbulence buffeting forces and fluid damping.

Representative frequency spectra for two experiments are given in Figure 6 for the lift
direction, where the first four graphs, (a)–(d), correspond to the fully flexible tube array
while the last four, (e)–(h), correspond to the single flexible tube in the rigid array. Note
that the ranges for the vertical scale (r.m.s. tip amplitude) are not all the same. In the case
of the fully flexible array for conditions below the stability threshold, it is apparent that
there are two distinct frequency peaks of vibration. The lower of these two frequency
peaks ranges from roughly 32Hz at low void fraction to 37Hz at the highest void fraction
levels. This peak steadily shifts towards a higher frequency as the void fraction is
increased, until it merges with the other peak. The second peak occurs at roughly 36Hz at



Figure 5. Typical amplitude response curves for two-phase R-11 cross-flow. Comparison of response
amplitudes for the fully flexible and single flexible tube arrays for a pitch mass flux of (a) 150 kg/m2 s and (b)
350 kg/m2 s.
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low void fraction, and increases to about 37Hz when the fluidelastic stability threshold is
reached. This behaviour can be explained by the significant influence of relative tube
motion on fluid added mass. The onset of fluidelastic instability in the flexible array
occurred roughly at the same time as these two frequency peaks merged. For the case of
the single flexible tube array, the two-peak phenomenon is virtually absent, and the spectra
more resemble that of a single-degree-of-freedom system subjected to random excitation.
For this reason, damping measurements were obtained using this tube array.

3.3. Flow Regime

A discussion of flow regime is necessary to set the stage for the subsequent comparison of
fluidelastic data. A vertical flow of two-phase gas and liquid will assume various flow
patterns and distribution of phases depending mostly upon the flow quality, the density
ratio of the two-phases and the total mass flux. The map used to predict the various flow
patterns in this study is illustrated in Figure 7. The abscissa and ordinate are in terms of
the superficial gas and liquid phase velocities (UGs and ULs), respectively, which are defined
as

ULs ¼ ð1� xÞGp=rL; UGs ¼ xGp=rG: ð8Þ

The solid lines in Figure 7 represent transition boundaries determined by Ulbrich &
Mewes (1994), who performed an exhaustive analysis of available flow regime data in



Figure 6. Frequency spectra of the monitored tube in the lift direction for a pitch mass flux of 350 kg/m2 s.
Graphs (a)–(d) correspond to the fully flexible tube bundle, and graphs (e)–(h) to the single flexible tube bundle.
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vertical two-phase cross-flow through horizontal tube bundles. They found that the flow
patterns observed and those plotted on the traditionally used maps of Taitel et al. (1980)
and Grant & Murray (1972), showed only a 46 and 50% rate of agreement, respectively.
Consequently, they developed a flow pattern map more appropriate for cross-flow in a
tube bundle, with a new set of boundaries which had an 86% rate of agreement with data
from the literature. The flow regime boundaries must be considered as approximate.
Figure 7 gives this flow regime map showing the stability threshold data of the present
study together with data from the literature (Pettigrew et al. 1989b, 1995; Axisa et al.
1985). Most of these data sets appear to cross over from the bubbly to the intermittent



Figure 7. Flow regime map developed by Ulbrich & Mewes (1994). Fluidelastic threshold data of: *, present
study in R-11; &, Axisa et al. (1985) in steam–water; m,n,.,}, Pettigrew et al. (1989b) in air–water;,, Pettigrew

et al. (1995) in R-22.
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flow regimes. This is of particular interest, because the subsequent analysis suggests that a
different fluidelastic behaviour exists between these two flow regimes.

3.4. Void Fraction Determination

An empirical model for predicting the void fraction in upward two-phase flows through
horizontal tube bundles has been developed by the present authors from the work of this
and previous studies. This model was tested against other researchers’ measurements of
void fraction in tube bundles for air–water and R-113, and remarkably good agreement
was observed. Figure 8 shows a sample set of results from the paper by Feenstra et al.
(2000), where this newly developed void fraction model was first introduced. This figure
shows the comparison of RAD void fraction measurements of the present study with
various void fraction models, including the HEM, the drift flux model developed by Zuber
& Findlay (1965), the empirical models developed by Dowlati et al. (1992) and Schrage
et al. (1988), and the new void fraction model. Two points are illustrated by this graph: the
HEM greatly overpredicts the actual gamma densitometer void fraction measurements,
and the prediction of the new void fraction model is superior to that of the other
models. Feenstra et al. (2000) also showed that their new model agreed well with
data in the literature for air–water and R-113 over a wide range of mass flux and array
geometries. The new void fraction model, which predicts the velocity ratio of the phases, is
given by

S ¼ 1þ 25�7ðRi� CapÞ0�5ðP=DÞ�1; ð9Þ

where the velocity ratio, S, is used in conjunction with equation (1) to determine the actual
void fraction, a. The Richardson number, Ri, is calculated by

Ri ¼ Dr2ga=G2
p; ð10Þ

where a is the gap between the tubes, Dr is the density difference between the phases (i.e.,
Dr ¼ rL � rG) and g is the gravitational acceleration. The Capillary number, Cap,



Figure 8. Comparison of void fraction models with measurements of the present study in R-11 cross flows for
Gp ¼ 350 kg/m2 s nominal. (––––––, HEM; - - - Dowlati et al. (1992); ���, drift flux; �–�–�, Schrage et al. (1988); }

} }, new void fraction model. *, Experimental RAD void fraction measurements.
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is calculated by

Cap ¼ mLUG=s; ð11Þ

where mL is the liquid-phase absolute viscosity, s is the liquid surface tension and UG is the
gas-phase velocity determined from equation (6). This void fraction model is utilized in
this paper to obtain more accurate estimates of average fluid density and flow velocity of
other researchers’ data sets for subsequent stability analysis.

3.5. Damping and Hydrodynamic Mass

The damping and hydrodynamic mass measurements in two-phase flows reported here
were obtained from the single flexible tube in an otherwise rigid array. Damping was
measured using the half-power bandwidth method, applied to the frequency response
function that was obtained from the output of the light probe. Previous research by
Weaver & Koroyannakis (1982) and by Harris et al. (1985) showed that measuring
damping of a tube with the others held fixed prevented amplitude modulation and energy
transfer to and from neighbouring tubes through fluid coupling.

The use of the half-power bandwidth method requires that the flow excitation be time
invariant, broadband random in the vicinity of the tube natural frequency and that the
vibratory system must be a linear, time invariant and of a single degree of freedom.
However, for closely spaced tube bundles in a dense medium, hydrodynamic coupling
violates the assumption of a time-invariant and single-degree-of-freedom system, because
each structural mode exhibits a number of natural frequencies corresponding to varying
added mass associated with different relative modes between adjacent tubes. This generally
results in a broadening of the measured frequency spectra of the monitored tube when
subjected to random broadband excitation. Application of the half-power bandwidth
method to such a broadened spectra would result in unrealistically high damping
measurements. This was observed by Pettigrew et al. (1989a), who also reported damping
measurements with a single flexible tube bundle in a two-phase air–water cross-flow. Thus,
using a single flexible tube in a rigid array has been shown to give reliable damping data
and is commonly used for tube bundles in liquid or two-phase flows where fluid coupling is
significant.



Figure 9. Summary of conditions corresponding to the fluidelastic stability threshold for fully flexible, parallel
triangular arrays subjected to two-phase cross-flow; *, present study in R-11; n, Pettigrew et al. (1989b) in air–
water; &, Pettigrew et al. (1995) in R-22. - - -, Required experimental conditions to obtain damping

measurements at half the critical mass flux.
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To be consistent with the method of Pettigrew et al. (1989a, b, 1995) for reducing the
fluidelastic data, special care was taken to obtain damping values at half the critical mass
flux. The fluidelastic stability threshold data points from the present study in Figure 9
illustrate that a nearly linear relationship exists between the HEM void fraction and pitch
mass flux for conditions at the stability threshold. The data of Pettigrew et al. (1989b,
1995) are plotted as well, to illustrate that a similar behaviour was observed in air–water
and in R-22 for a mass flux less than about 650 kg/m2 s. The dotted line represents the
conditions at half the mass flux for instability for the present study, and was used in
subsequent experiments as a target for obtaining the required conditions for damping and
hydrodynamic mass measurements. This line extends only over a limited range of HEM
void fraction from about 54 to 89%. Conditions above 89% HEM void fraction are out of
range because it is not practical to operate the flow loop at a pitch mass flux less than
about 50 kg/m2 s. HEM void fraction below 54% is out of range because the required
threshold flow velocity requires a pitch mass flux in excess of 500 kg/m2 s, which is the
present maximum capacity of the flow loop.

3.5.1. Damping in two-phase flow

The damping data for this study are presented in Figure 10(a) as a function of HEM void
fraction, obtained from a least-squares regression fit to the frequency spectra of tube #5,
which was averaged over 600 s of data with a frequency resolution of 0�125Hz. It is clear
that the measured damping is consistently lower in the lift direction, which is also the
direction that the tube becomes fluidelastically unstable.

In Figure 10(b), the average damping data of the present study (average of the lift and
drag direction) are compared with damping data of Pettigrew et al. (1989a, 1995) for air–
water and R-22 and Axisa et al. (1985) for steam–water. This figure illustrates that the
measured damping ratios, z, of the present study are roughly the same as the air–water and
steam–water data above 70% homogeneous void fraction, but somewhat lower at void
fractions below 70%. Table 2 contains the essential damping data for the present study as
well as for the other studies used for comparison in this paper.



Figure 10. Summary of damping measurements for a single flexible tube in parallel triangular arrays,
subjected to two-phase cross-flow. (a) Present study in R-11: *, lift direction; *, drag direction. (b) Measured
damping comparison, (c) two-phase damping comparison and (d) normalized two-phase damping comparison:
*, present study in R-11; n, Pettigrew et al. (1989b) in air–water; ,, Pettigrew et al. (1995) in R-22; &, Axisa

et al. (1985) in steam–water.
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In Figure 10(c), the average two-phase damping data of the present study are compared
with those of the other studies. The two-phase component of tube damping, zTP, is found
when the structural, zS, and viscous components, zV , are subtracted from the measured
damping, (i.e., zTP ¼ z� zS � zV ). The structural damping component of the other cases
was 0�2% or less, so that it represents a nearly negligible component of the overall
damping. The viscous component of damping is given by

zV ¼
p
8

rHD
2

m

� �
2nTP
pfD2

� �0�5 ½1þ ðD=DeÞ
3	

½1� ðD=DeÞ
2	2

; ð12Þ

which varies inversely with void fraction (Pettigrew et al. 1986). It can been seen in Table 2
that this component diminishes at high void fraction. The two-phase viscosity, vTP, follows
the method of McAdams et al. (1942),

nTP ¼
nL

1þ aHðnL=nG � 1Þ
: ð13Þ
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The normalized two-phase component of damping ratio, ðzTPÞD, is plotted in Figure
10(d) along with the other data. Though it is not yet known which parameters are valid for
normalizing the two-phase damping data for different fluids, the present study follows a
method proposed by Pettigrew & Taylor (1994)

ðzTPÞD ¼ zTP
m

rLD2

� �
ð1� ðD=DeÞ

2Þ2

1þ ðD=DeÞ
3

" #
; ð14Þ

where zTP is the two-phase damping component and the other two parameters in the
square brackets are the mass ratio, m=rLD

2, and the inverse confinement function. The
confinement term, D=De, follows the work of Rogers et al. (1984) and is given by

D=De ¼ 0 �96þ 0 �5
P

D

� �
P

D

� ��1

: ð15Þ

Interestingly, the comparison reveals that the present normalized damping data agree
reasonably well with the air–water data of Pettigrew et al. (1989a) and the R-22
data of Pettigrew et al. (1995). The explanation for the relative upward shift in
magnitude between the R-11 data and the air–water data from (c) to (d) in Figure 10 can
be found by examining the terms used to normalize the data. In both the R-11 and
air–water results, the confinement functions were roughly equal at 1�55 and 1�52,
respectively, because this function is fixed by the array type and the P=D ratio and was
about the same for all of the comparison data. However, the mass ratio in liquid, m=rLD

2,
is significantly lower for the R-11 data than for the air–water and R-22 data, which
caused the upward shift in the magnitude of the R-11 data when it was normalized using
equation (14).

It is noteworthy that the damping data of the present study achieved satisfactory
agreement with the air–water and R-22 data without any correction for surface tension
effects. However, initial experiments by Pettigrew & Knowles (1997) in air–water showed a
roughly linear correlation between damping and surface tension of the liquid phase for
lower tube frequencies (i.e., 28Hz and lower). They proposed that an additional surface
tension term might be appropriate in equation (14) such as

Surface tension term ¼
sT

swater; 208C

� ��1

; ð16Þ

where swater; 208C represents the surface tension of ambient pure water. However, if
equation (16) were included as a normalizing parameter in equation (17), then the R-11
damping results in Figure 10(d) would increase by a factor of about 4 (verified easily by
comparing the surface tension data in Table 1), which would set them far apart from the
other data. This suggests that the effect of surface tension is not as strong as first believed,
but there are a number of issues which must be resolved before a reliable design factor can
be devised to account for it. Firstly, it is well known that a small amount of contaminant
in the liquid can significantly decrease the surface tension from the published value, so
that a reliable measurement method of the actual liquid surface tension is required.
Secondly, the initial work by Pettigrew & Knowles (1997) did not extend beyond 25%
void fraction, and their results for tube frequencies of 28Hz tended towards a decreasing
dependence on surface tension as the void fraction was increased from 5 to 15 to
25%. Hence the effect of surface tension is excluded from this analysis until more
comprehensive data become available and a more reliable surface tension scaling
parameter is determined.
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3.5.2. Hydrodynamic mass in two-phase flow

Figure 11(a) illustrates the hydrodynamic mass ratio as a function of HEM void fraction.
Hydrodynamic mass is the fluid added mass (or virtual mass) which appears to vibrate
with the tube. Hydrodynamic mass ratio, mR, is the added fluid mass divided by the added
mass of the liquid phase determined according to

mR ¼
ðfa=f Þ

2 � 1

ðfa=fLÞ
2 � 1

; ð17Þ

where f , fa and fL are the tube vibration frequencies in two-phase flow, in still air and in
still liquid, respectively. The measurements were obtained from tube #5 in the single
flexible tube array. In these graphs, the data points correspond to measured hydrodynamic
mass ratio for various mass fluxes. The solid lines in Figure 11(a,b) represent the predicted
hydrodynamic mass ratio according to

mR; pred ¼
rHEM

rL
or

rRAD

rL
: ð18Þ

The data in the upper graph, Figure 11(a), shows generally a higher hydrodynamic mass
ratio than predicted using the HEM void fraction. This is expected, since it was earlier
Figure 11. Measured data for hydrodynamic mass ratio, mR, for the single flexible tube bundle subjected to
two-phase R-11 cross-flow. Comparison of measurement and theory using (a) HEM void fraction, and (b) RAD
void fraction. Data correspond to a pitch mass flux (Gp) of: *, 150; n, 200; &, 250; }, 300; ,, 350 kg/m2 s.

––––––, Predicted mass ratio.
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demonstrated that the HEM generally overpredicts the relative amount of vapour phase in
the flow and thus it is expected to predict a lower added mass. However, in Figure 11(b),
the data shows a lower hydrodynamic mass ratio than predicted using the RAD void
fraction. This is not expected, however, because the RAD void fraction is a better measure
of the actual void fraction in the flow than the HEM. It appears as if the tube vibrates in a
‘‘lighter’’ fluid than indicated by the RAD void fraction.

3.6. Fluidelastic Instability in Two-Phase Flow

3.6.1. Comparison of fluidelastic results with data from the literature

Four sets of fluidelastic instability results are plotted in Figure 12(a) in terms of critical
reduced velocity versus mass damping parameter: the present data in R-11, P=D ¼ 1 �44;
Pettigrew et al. (1989b) in air–water, P=D ¼ 1�47; Axisa et al. (1985) in steam–water,
P=D ¼ 1�44; and Pettigrew et al. (1995) in R-22, P=D ¼ 1�5. In this figure, the HEM is
used to calculate the pitch flow velocity, Vp, and average fluid density, rH , which is the
traditional approach. Mass-damping parameter is given by md=rHD

2, where d is the in-
flow logarithmic decrement damping value, and rH is the average density of the two-phase
Figure 12. Critical flow velocities for fluidelastic instability of parallel triangular tube arrays in two-phase
cross-flow. Data analysis by (a) HEM model, and (b) void fraction model: *,*, present study in R-11; n,m,
Pettigrew et al. (1989b) in air–water; ,,., Pettigrew et al. (1995) in R-22; &,&, Axisa et al. (1985) in steam–
water; }}}, Connors’ theory; - - - -, prediction of Li & Weaver (1997). *,n,,,&, Bubbly flow; *,m,.,

intermittent flow; & dispersed flow.
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flow, which is calculated using equation (2). The mass per unit length, m, is the mass of the
tube per unit length including fluid hydrodynamic mass, which is determined by

m ¼ mtðfa=f Þ
2; ð19Þ

where mt is the mass per unit length of the tube in air while fa and f are the tube vibration
frequencies in-air and in-flow respectively. The in-flow damping, d, was used to plot this
data, where for all results except for Axisa et al. (1985), the damping value was obtained
from half-power bandwidth measurements of a single flexible tube in a rigid array at half
the mass flux for fluidelastic instability. This simply follows the practice developed by
Pettigrew et al. (1989a). Axisa et al. measured damping in the fully flexible bundle, but the
void fraction range of their data was high, so that fluid coupling was likely less of a
problem.

The design criterion of Pettigrew & Taylor (1994) for the determination of critical flow
velocity is indicated by the solid line on Figure 12 for P=D ratios of between 1�4 and 1�5 in
continuous flow regimes (i.e., bubbly). This follows from Connors’ relationship

Vp=fD ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=rHD2

q
; ð20Þ

where d � 2pz. This relationship predicts that the critical reduced velocity should vary
with mass-damping parameter to the one-half power, and the so-called ‘‘Connors
constant’’ should be K ¼ 3�0. Also plotted on this figure is the theoretical stability
prediction of Li & Weaver (1997) for parallel triangular arrays of P=D ¼ 1�5, which was
developed for single-phase flow. The data points in this figure have been distinguished
between the different predicted flow regimes, where the open symbols correspond to
bubbly flow and the solid symbols represent intermittent flow, except for Axisa et al. where
the solid symbols represent the dispersed (annular) flow regime. Of particular note in this
figure is that the air–water data show a distinct change in slope while the R-22 and some of
the R-11 data show a decrease in stability. All of these effects coincide with a predicted
flow regime change from bubbly to intermittent flow.

The present data corresponding to the bubbly flow regime show a lower stability
threshold than most of the other data of the bubbly flow type, where an appropriate lower
bound for Connors’ constant would be about K ¼ 2 �0. A possible reason for the
difference could be the effect of using different modelling fluids, since the majority of the
earlier data which were obtained in air–water. R-11 is a single component fluid while air–
water is a two-component fluid which cannot simulate the local formation or collapse of
vapour on the tube surfaces. This could be a factor affecting the tube forces in the steam
generator tube bundle which is subjected to steam–water. However, the steam–water
results of Axisa et al. (1985) show a higher stability than the air–water results,
corresponding to a lower bound Connors’ constant of K ¼ 4�2. Thus, the effect of two
component versus single component modelling fluids remains unclear based upon this
simple comparison. Another difference between the present results and other data is the
physical scale of the model. This study used 6�35mm (1/400) diameter tubes while the other
studies used full-scale tube diameters of 12�7mm (1

2

00
) or greater. It is generally accepted

that, using dimensionless parameters to compare model and prototype behaviour,
correctly handles scale effects, so the physical dimensions of laboratory models and
prototypical structures vary substantially. However, two-phase flows are a special case,
because of the presence of vapour bubbles or liquid droplets. Clearly, the size of these
bubbles or droplets compared to the tube dimensions could play an important role in
determining the magnitude of these fluid forces. Additionally, void coalescence or liquid
slugging can occur, leading to intermittent flows. These effects are determined, in part, by
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surface tension which is not scaled in the standard approach to tube bundle two-phase
flow stability analysis. Indeed, the HEM approach considers that the only effect of two-
phase flow is density variation and in the authors’ opinion, does not even do that very well.
Fluidelastic instability in two-phase flow is very complex and proper scaling should
include such effects as surface tension, flow regime and velocity ratio (slip ratio) between
the phases.

3.6.2. Data comparison using void fraction modelling

To the authors’ knowledge, no attempt has previously been made to compare the existing
fluidelastic instability data using a more accurate two-fluid model for determining the two-
phase fluid parameters such as flow velocity and average density. Since it was established
in Feenstra et al. (2000) that their new model is capable of predicting the void fraction in
an upward two-phase flow in horizontal tube arrays for a variety of fluids, it is appropriate
to recalculate the important parameters of the existing data and make such a comparison.
The HEM void fraction, aH , and predicted void fraction, a, are compared for each data set
in Table 3. The average fluid density is determined using equation (2) except that the
predicted void fraction, a, was utilized instead of the HEM void fraction, aH . The
equivalent flow velocity, Veq, is determined from equation (7). The fluidelastic data of the
other researchers were recalculated using the foregoing void fraction model and plotted on
a stability diagram as shown in Figure 12(b), along with the data of the present study, in
which the RAD void fraction was utilized. Note that the mass per unit length, m, and the
vibration frequency, f , remained unchanged in the modified analysis. As was done in
Figure 12(a), each data set is distinguished by the predicted flow regimes. By comparing
the lower graph with the upper graph in Figure 12, it is clear that the new void fraction
model has compressed each data set into a smaller range of mass-damping parameter. This
is because the variation of average fluid density for each data set is smaller when analysed
with the void fraction model as opposed to the HEM. The air–water data shows a
remarkable change in behaviour between the predicted bubbly and intermittent flow
regimes. In bubbly flow, the critical reduced velocity results follow a trend with mass-
damping parameter which roughly agrees with Connors’ formula as indicated by the solid
line in both graphs of Figure 12. However, the data points corresponding to the
intermittent flow regime show a significant reduction in critical reduced velocity over a
small range of mass-damping parameter. Roughly, the same observation was made for the
R-22 data, although in this case, some of the data points in the bubbly flow regime also
show a decrease in stability with mass-damping parameter. The Axisa et al. steam–water
data is rather tightly clustered in both graphs and it is difficult to observe any clear trends
in stability behaviour, either with mass-damping parameter or flow regime. The R-11 data
of the present study shows little variation in mass-damping parameter, yet it covers a
significant range of reduced velocity.

3.6.3. Comparison for other tube array geometries

To extend the comparison, the fluidelastic instability data of the other researchers for
other bundle array geometries, normal triangular, normal square (in-line) and rotated
square were also analysed using both HEM and void fraction model analysis. The purpose
of this extended analysis was to show that the flow regime effects observed for the parallel
triangular tube array are also observed in the other array geometries and P/D ratios. The
air–water results of Pettigrew et al. (1989b) for two normal triangular arrays of
P=D ¼ 1�47 and 1�32, and a normal square array of P=D ¼ 1�47 are displayed in Figure
13(a,b). The upper graph presents the results analysed using the HEM. The data which
corresponds to bubbly flow (open symbols) follows Connors’ theory reasonably well, but



Figure 13. Critical flow velocities for fluidelastic instability for the data of Pettigrew et al. (1989b) for various
tube arrays subjected to two-phase air–water cross-flow. Data analysis by (a) HEM model, and (b) void fraction
model: &,&, normal square array, P=D ¼ 1:47; ,,., normal triangular array, P=D ¼ 1:32; n,m, normal
triangular array, P=D ¼ 1:47. }}, Connors’ theory; - - -, prediction of Li & Weaver (1997). n,,,&, Bubbly

flow; m,.,&, intermittent flow.
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those data points which correspond to intermittent flow (solid symbols) deviate from this
straight line relationship. In the lower graph, the same data are presented using the
predictions of the void fraction model for determining average fluid density and equivalent
flow velocity. In this case, it is clear that the same trends are observed in Figure 13(b) as in
Figure 12(b), that the bubbly flow data remains in good agreement with the trend
established by Connors’ theory, but the data corresponding to intermittent flow departs
significantly from this prediction. The application of the void fraction model has
emphasized the downward turn of the intermittent flow data, so that the range of mass-
damping parameter is reduced, while the values of the critical reduced velocity have
changed from being relatively constant in the upper figure to decreasing significantly over
a small range of mass-damping parameter in the lower figure.

The steam–water data of Axisa et al. (1985) and the R-12 data of Mann & Mayinger
(1995) are presented in Figure 14, following the same comparison format as in the previous
two figures. The data of Axisa et al. includes a normal triangular bundle and normal
square bundle of P=D ¼ 1�44, but in this case the solid symbols correspond to the
dispersed flow regime as predicted by Ulbrich & Mewes’ map. The three data points of
Mann & Mayinger (1995) are for a normal square bundle and correspond to bubbly flow
only. In the upper graph, Figure 14(a), the data are analysed using the HEM while in the



Figure 14. Critical flow velocities for fluidelastic instability for the data of other researchers for various tube
arrays subjected to two-phase cross-flow. Data analysis by (a) HEM model, and (b) void fraction model: n, m,
&, &, Axisa et al. (1985) in steam–water; }, Mann & Mayinger (1995) in R-12. }}}, Connors’ theory;

- - -, prediction of Li & Weaver (1997). n, &, }, Bubbly flow; m, &, intermittent flow.
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lower graph the data are analysed using the void fraction model. In this case, all of the
data are clustered together and occupy only a small range of mass-damping parameter,
which makes it difficult to discern any trends with respect to that parameter. However, it is
clear that there exists no obvious difference between the bubbly flow data (open symbols)
and the dispersed flow data (filled symbols). In the lower graph, Figure 14(b), the data is
only slightly compressed in the horizontal direction, and the modified analysis indicates a
slightly lower stability for the dispersed flow regime data versus the bubbly flow data. The
data of Mann and Mayinger in the lower graph has slightly reversed in trend. In the upper
graph, Vp=fD increased slightly with mass-damping parameter, while in the lower graph
this trend is opposite. However, a significant decrease in stability is not observed, which is
consistent with behaviour of the bubbly flow data in the previous two figures.

Returning to Figs. 12(b) and 13(b), it was shown that the application of the void
fraction model resulted in a significant departure from the predicted stability behaviour for
the data points corresponding to the intermittent flow regime. It is observed that each set
of these data points (filled symbols) correspond to nearly the same mass-damping
parameter, and yet they cover nearly a decade of critical reduced velocity values. In each
case, the lowest values of Veq=fD correspond to flows with the highest void fraction. Such
a trend creates uncertainty for the designer who wishes to predict the stability limit of a
particular heat exchanger design, since it is normally expected that the critical reduced
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velocity should have a single-valued relationship with mass-damping parameter. The
analysis suggests that reduced velocity and mass-damping parameters alone may be
insufficient to properly model flow-induced vibration in the intermittent flow regime of
two-phase flows, and that there are added complications in this type of two-phase flow
which the present analysis neglects. One possible factor is the ratio of bubble size to tube
diameter, which could affect the pressure drop of the flow through the array and the fluid
damping. It may also play a role in the level and correlation length of turbulent forces on
the tubes in the array. The present authors have observed that the average bubble size
increases with void fraction and decreases slightly with mass flux. At very low void
fractions (below 10%) the vapour bubbles are small, have roughly the same velocity and
are distributed fairly evenly across the cross-section of the flow conduit. As void fraction
rises, however, the average bubble size increases and the large bubbles travel upward
faster, while the smaller bubbles travel slower and often stagnate or become entrained in
the periodic liquid down-wash. When the void fraction increases further to the point where
the flow regime becomes intermittent, the flow is no longer steady, and periodic upward
surges of high void fraction flow occurs, followed by periods of bubble stagnation and
liquid down-wash. In such a case, defining an average or equivalent flow velocity for
fluidelastic threshold calculations may be inappropriate. Additionally, a nonlinear
softening effect may be occurring, whereby the flow surges may be sufficient to trigger
the instability in a nonadjacent equilibrium state. Since the fluidelastic forces are self-
excited, the high amplitude vibrations brought on by such transient events may persist
even if the flow velocity reduces below the critical velocity but not into the subcritical
range. Since the intermittent flow regime is characterized by substantial fluctuations in
flow velocity and void distribution, it has the potential for initiating fluidelastic instability
at flow rates lower than normally expected for steady flow. The fact that the stability
threshold decreases for lower mass flux levels (corresponding to higher void fractions) is
consistent with the fact that the intermittency is more pronounced at higher void fractions,
so long as dispersed flow is not approached. However, more research is necessary to
rigorously establish a velocity criterion for fluidelastic instability in two-phase flow,
especially in the intermittent flow regime.

4. CONCLUSIONS

The modelling process for studying flow-induced vibration of a parallel triangular tube
array subjected to two-phase R-11 flow has been presented along with a comparison of the
stability behaviour of this array with data of other researchers. The primary intent of the
research was to explore a new method of stability analysis which incorporates more
realistic modelling of the two-phase flow.

The experimental results of the present study showed that the actual void fraction
obtained with the radiation attenuation detection method (RAD) was significantly less
than that assumed by the homogeneous equilibrium model (HEM). This difference arises
because the HEM neglects velocity differences between the phases and has important
implications for the accurate determination of two-phase fluid parameters such as average
density and equivalent flow velocity. A relatively simple model for determining improved
void fraction predictions has been developed and is used for data analysis in this paper.

Damping measurements were obtained from the single flexible tube array, showing that
the tube damping in two-phase cross-flow peaks at about 75 to 80% HEM void fraction.
This is in qualitative agreement with air–water and R-22 data from the literature.
Comparison has revealed that, while the measured two-phase damping values in R-11 are
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slightly lower than comparable air–water data, the normalized two-phase component of
damping is actually a bit higher than in air–water, owing to the large difference in liquid
mass ratio (a normalizing parameter) between these two sets of data. However, it must be
noted that the present normalizing parameters are still in the developmental stages, since
the effects of liquid surface tension or flow regime have not been adequately determined.

The use of the improved void fraction model for analysing fluidelastic instability data
has shown some interesting results. The improved estimate for average fluid density has
significantly reduced that range of the mass-damping parameter for the various modelling
fluids. At the same time, it has greatly enhanced the change in stability trend associated
with a change in flow regime from bubbly to intermittent flow, and the data collapse in the
latter flow regime has been substantially improved. The analysis presented in this paper is
considered to be only a step in the direction of improved modelling for fluidelastic
instability of tube bundles in two-phase flow. More research is needed in order to better
account for the effects of surface tension, bubble or liquid droplet size and distribution,
and flow regime.
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APPENDIX: NOMENCLATURE

A cross-sectional area, m2

Cap Capillary number
D tube diameter, m
D=De tube confinement ratio
f frequency of vibration, Hz
g gravitational acceleration, m/s2

G mass flux, kg/m2 s
K Connors’ constant
m tube mass per unit length including added fluid mass, kg/m
mt tube mass per unit length, kg/m
mR added mass ratio
N gamma count in two-phase fluid medium
NG gamma count in gas-phase medium
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NL gamma count in liquid-phase medium
Ri Richardson number
S slip ratio
UG gas phase velocity, m/s
UL liquid phase velocity, m/s
UGs superficial gas phase velocity, m/s
ULs superficial liquid phase velocity, m/s
Vp pitch flow velocity, m/s
x flow quality
Greek letters
a void fraction
Dr density difference between phases, kg/m3

d logarithmic decrement damping
z damping ratio
m absolute viscosity, Pa s
v relative viscosity, m2/s
r fluid density, kg/m3

s liquid surface tension, N/m
Subscripts
a quantity measured in air
eq equivalent quantity
Crit critical value at the fluidelastic threshold
G gas phase
Gs superficial gas phase
H quantity calculated by the homogeneous equilibrium model
L liquid phase
Ls superficial liquid phase
p pitch quantity
s structural component
TP two-phase component
u upstream quantity
V viscous component
pred predicted value
RAD quantity corresponding to radiation attenuation detection method of void

fraction measurement
HEM quantity corresponding to homogeneous equilibrium model for void

fraction measurement
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